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Recent years have witnessed substantial research activities in
the field of chemistry and biochemistry of nitric oxide (NO)
because of the remarkable discoveries of its key roles in a wide
range of human physiological processes.1 As a unique class of
such NO-carrying vehicles,S-nitrosothiols (RSNOs) are generally
believed to take a most active part in many biological functions
of nitric oxide especially in the processes of NO-storage, transport,
and delivery.2-8 Despite its obvious importance, the S-NO bond-
energy scale, which registers the thermodynamic driving forces
for NO release and NO capture, has yet not been reported. As
part of our efforts to understand the NO-related physiological
processes at a molecular level, we have conducted a solution NO
affinity study9 for a series ofR π-acceptor-bearingN-nitroso
compounds12 in terms of the heterolytic and homolytic Y-NO
bond dissociation energies. Similarly, typical O-NO13 and
N-NO14 bond energies were later determined. Although the

instability of thioanion and thio-radical (and to a less extent, the
parentS-nitroso) species under the required experimental condi-
tions prohibits application of the established method12-14 to derive
the S-NO bond energies (i.e., NO affinities) of biologically more
relevant RSNOs, in the present work we report the first
experimental derivation and theoretical calculations of the S-NO
bond energies for two series of thiol-containing model compounds
(1 and2), where the NO+ and NO• affinities of the model thiol

compounds, as represented respectively by the corresponding
S-NO bond heterolysis and homolysis energies (∆Hhet and
∆Hhomo), were determined by using a different thermodynamic
cycle as shown in Scheme 1.

Here the∆Hhet(S-NO)’s were indirectly derived from the pKa’s
and heats of reactions (∆Hrxn’s) of the parent thiols with NO+

using eq 1 (Scheme 1, upper part above the dotted line). This is
because direct contact of thiolate with NO+ was found to result
in only disulfide (RSSR), not the desiredS-nitroso (RSNO)
product, whereas the reactions of thiols with NO+ could give rise
to RSNO which were observed to be stable enough under
titrimetric conditions.15 Since many MeCN-phase pKa data of the
thiols of interest in the present work are not yet available, these
data are derived by using the plot of MeCN-pKa’s versus DMSO-
pKa’s (n ) 75, r ) 0.991, sd) 0.46) in combination with the
available pKa values of the corresponding thiols in dimethyl
sulfoxide.

The heats of reactions (∆Hrxn) of thiols with NO+ (as from a
NOClO4-MeCN solution) were measured under argon by titration
calorimetry in dry acetonitrile at 25°C using a Tronac 458
calorimeter. After a certain amount of MeCN solution of
NO+ClO4

- was titrated in through a carefully calibrated motor-
driven buret to the reaction vessel containing an excess amount
of thiol, heat was generated and was computer-processed to give
the heat of nitrosation (∆Hrxn). The ∆Hhet’s of the S-NO bond
(i.e., NO+ affinities) can then be calculated from eq 1, and are
presented in Table 1 together with the quantities necessary for
the evaluation (pKa, ∆Hrxn).

Scheme 1 also illustrates a cycle to derive homolytic S-NO
bond dissociation energy (i.e., NO• affinity, eq 2). This methodol-
ogy is fundamentally similar to that of Arnett,16 and the
experimental uncertainties of∆Hhomo’s are also similar to those
in the literature16 (∼3 kcal as maximum17). The∆Hhomo(S-NO)’s
thus derived, together with the measured oxidation potentials of
thianions [Eox(S-)], are also presented in Table 1.
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Since it is conceivable that thiophenols may undergo aromatic
nitrosation reaction during calorimetry measurement, the reactions
of Ar-SH with NO+ClO4

- were investigated carefully. Under
water-free and oxygen-free conditions in the dark and in dry
acetonitrile it was found that the reactions initially produced
S-nitrosated product Ar-SNO, as evidenced from its characteristic
UV/vis absorption maxima at 366 and 568 nm, and NMR spectra
taken within 5 min after the reaction.15 Therefore, although other
reactions may come into play afterward, we believe that the
initially formed S-nitroso compounds are stable enough during
the time span (0.3-0.5 min) of the titration experiment.

Table 1 shows that the∆Hhet(S-NO)’s of S-nitrosothiophenols
(1) range from 39.3 to 55.0 kcal/mol (henceforth abbreviated as
kcal). Comparisons of the S-NO ∆Hhet’s with those of the N-NO
bonds inN-nitrosophenylthioureas (52.4-62.0 kcal)12 and those
of the O-NO bonds inO-nitrosobenzoates (25.7-32.3 kcal)13

demonstrate that the S-NO bond is much stronger than O-NO
bond but is weaker than N-NO bond in terms of heterolysis in
MeCN solution. This may be attributed qualitatively to a similar
trend in the match of their softness (or hardness) between the
relevant ligands (i.e., N/NO> S/NO > O/NO).

The ∆Hhomo data in Table 1 indicates that the S-NO bond
homolysis requires remarkably less energy than heterolysis by
an average of 29( 3.5 kcal. In general, the∆Hhomo(S-NO)’s
for aromatic S-NO bonds are around 20 kcal, whereas those of
the alkyl S-NO bonds about 5 kcal higher. It was noted that the
low homolytic BDE ofS-nitrosothiophenols may not accurately
reflect the halftime of these species in acetonitrile. As shown in

Table 1, the gap between∆Hhet and ∆Hhomo (δ∆H) increases
gradually as the remote substituent is going from electron-pulling
to electron-pushing, which results in a quite good linear cor-
respondence between theδ∆H values and Hammettσ constants
(r ) 0.9937). This energy gap and its unique feature of the model
S-nitroso molecules may be significant for understanding the
excellent NO-storage and transport properties of natural thiol-
bearing species, because a high∆Hhet value (∼50 kcal) indicates
good NO+-accepting property and a low∆Hhomovalue (∼20 kcal)
suggests good NO•-releasing property. It is well-known that while
heterolysis energies depend largely on solvent and may only
parallel those obtained in other media,18 homolysis energies are
widely found to be insensitive to environment due to a large
cancellation of the solvation effect.19 This would at least validate
the energy scales established in this work to be used as quantitative
guide for analyzing the NO-related problems under physiological
conditions.

To further examine this point, density functional theory (DFT)20

was also applied in this work to calculate aromatic and aliphatic
S-NO bond dissociation energies (BDEs) in the gas-phase. The
B3LYP/6-31+G* calculated results are summarized in Table 1.
The most important feature in Table 1 is that the BDEs of
substituted S-nitrosothiophenols are around 20 kcal, which
matches closely with the experimental S-NO ∆Hhomo’s obtained
in MeCN solution. The calculated S-NO BDEs ofS-nitrosoalky-
lthiols, that is, C6H5CH2S-NO andt-BuS-NO, are also in good
agreement with the experimental values. The calculated confor-
mational preference for C-S-NdO moiety in S-nitroso-tert-
butylthiol is anti, whereas those for substitutedS-nitrosothiophe-
nols and inS-nitroso-benzylthiol aresyn. This agrees well with
the recent work reported by Bartberger et al.21

In conclusion, two series of bond cleavage energies of the
S-NO bond in RSNOs were obtained in acetonitrile with direct
calorimetry measurements through a new thermodynamic ap-
proach (Scheme 1). BDEs of the S-NO bond in the RSNO model
compounds in the gas phase were also calculated at the B3LYP/
6-31+G* level, which are found to be in good agreement with
the experimental values. Substituent effects on the cleavage
energies of the S-NO bonds inS-nitrosothiols are also tentatively
rationalized. The structural and energetic information disclosed
in the present work is believed to furnish hints to the understand-
ing of the biological functions of RSNOs in vivo.
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Scheme 1

Table 1. ∆Hrxn, ∆Hhet, and∆Hhomo of S-Nitrosothiols, pKa of
Thiols, and Related Electrochemical Quantities at 25°C

∆Hhomo(kcal/mol)

RSNO pKa
a

∆Hrxn
b

(kcal/mol)
∆Hhet

c

(kcal/mol)
Eox(S-)d

(V) exptle calcdf

1 G-C6H4S-NO
G ) 4-H 20.0 -22.0( 0.6 49.2( 1.2 -0.427( 0.005 19.4( 1.3 20.2
4-MeO 20.9 -25.0( 0.9 53.5( 1.7 -0.546( 0.010 21.0( 1.9 18.4
4-Cl 19.0 -21.4( 0.7 47.2( 1.3 -0.351( 0.004 19.2( 1.4 19.7
3-Cl 18.4 -21.7( 0.7 46.6( 1.3 -0.250( 0.004 20.9( 1.4 20.4
2-Cl 18.3 -20.7( 0.8 45.6( 1.4 -0.275( 0.003 19.3( 1.5 20.5
4-Me 20.5 -24.8( 0.5 52.7( 1.1 -0.494( 0.004 21.4( 1.2 19.6
3-Me 20.3 -23.5( 0.5 51.1( 1.1 -0.491( 0.005 19.9( 1.2 19.7
4-NO2 15.3 -18.4( 0.7 39.3( 1.3 -0.035( 0.008 18.6( 1.5 20.9

2 RS-NO
R ) t-C4H9 27.5 -20.3( 0.5 57.6( 1.1 -0.549( 0.005 25.0( 1.2 27.5
PhCH2 25.0 -22.0( 0.4 56.0( 1.0 -0.440( 0.005 25.9( 1.1 28.8

a Derived from: pKa(MeCN) ) 0.982pKa(DMSO) + 9.94. This
equation is based on all the available pKa’s which can be found in
both MeCN and DMSO solutions. (Izutsu, K.Acid-Base Dissociation
Constants in Dipolar Aprotic SolVents, IUPAC Chem. Data Ser. No.
35; Blackwell Scientific Publications: Oxford, 1990).b Measured in
MeCN at 25°C in kcal/mol by titration calorimetry.12,16The data given
were average values of at least two independent runs, each of which
was again an average value of 4-6 consecutive titrations.c Derived
from eq 1 in Scheme 1.d Measured in MeCN at 25°C by CV in volts
vs ferrocenium/ferrocene redox couple.e Derived from eq 2 in Scheme
1 in kcal/mol takingE1/2(NO+) ) 0.863 V.12 f Computed at the B3LYP/
6-31+G* level of theory with zero-point energy (ZPE) and thermal
corrections to the enthalpy at 298 K.

2904 J. Am. Chem. Soc., Vol. 123, No. 12, 2001 Communications to the Editor


